73 research outputs found

    Activation of Stress Kinases in the Brain of Mucopolysaccharidosis IIIB mice

    Get PDF
    The accumulation of heparan sulfate (HS) in lysosomes is the primary consequence of the enzyme defect (α-N-acetylglucosaminidase) in mucopolysaccharidosis type IIIB. This accumulation triggers a cascade of pathological events that progressively leads to CNS pathology. Here we examined the activation of the three major stress kinases in the neuronal tissue of a murine model of the disease. ERK1/2 was significantly higher in the cortex of 1–2-month-old affected animals compared with wild-type (Wt) littermates. Similarly, ERK1/2 was stimulated in neurons cultured from MPS IIIB mice. SAPK/JNK was also found to be activated in the cortex of 1–2-month-old affected animals compared with Wt subjects, and the same was found for cultured neurons. In contrast, the active form of p38MAPK was lower in the cortex of 1-month-old MPS IIIB mice compared with Wt animals, but no significant difference was found between the two p38MAPK analyzed in normal and affected neurons cultured in vitro. These data indicate the possible involvement of MAPK dysregulation in the early stage of MPS IIIB brain disease. © 2011 Wiley-Liss, Inc

    The IMiDs targets IKZF-1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma

    Get PDF
    Immunomodulatory drugs (IMiDs) have potent anti-tumor activities in multiple myeloma (MM) and are able to enhance the cytotoxic function of natural killer (NK) cells, important effectors of the immune response against MM. Here, we show that these drugs can enhance the expression of the NKG2D and DNAM-1 activating receptor ligands MICA and PVR/CD155 in human MM cell lines and primary malignant plasma cells. Depletion of cereblon (CRBN) by shRNA interference strongly impaired upregulation of these ligands and, more interestingly, IMiDs/CRBN-mediated downregulation of the transcription factors Ikaros (IKZF1), Aiolos (IKZF3) and IRF4 was critical for these regulatory mechanisms. Indeed, shRNA knockdown of IKZF1 or IKZF3 expression was both necessary and sufficient for the upregulation of MICA and PVR/CD155 expression, suggesting that these transcription factors can repress these genes; accordingly, the direct interaction and the negative role of IKZF1 and IKZF3 proteins on MICA and PVR/CD155 promoters were demonstrated. Finally, MICA expression was enhanced in IRF4-silenced cells, indicating a specific suppressive role of this transcription factor on MICA gene expression in MM cells. Taken together, these findings describe novel molecular pathways involved in the regulation of MICA and PVR/CD155 gene expression and identify the transcription factors IKZF-1/IKZF-3 and IRF4 as repressors of these genes in MM cells

    Tumor-associated and immunochemotherapy-dependent long-term alterations of the peripheral blood NK cell compartment in DLBCL patients

    Get PDF
    Natural Killer (NK) cells are a key component of tumor immunosurveillance and thus play an important role in rituximab-dependent killing of lymphoma cells via an antibody-dependent cellular cytotoxicity (ADCC) mechanism. We evaluated the phenotypic and functional assets of peripheral blood NK cell subsets in 32 newly-diagnosed diffuse large B-cell lymphoma (DLBCL) patients and in 27 healthy controls. We further monitored long-term modifications of patient NK cells for up to 12 months after rituximab-based immunochemotherapy. At diagnosis, patients showed a higher percentage of CD56dim and CD16C NK cells, and a higher frequency of GrzBC cells in CD56dim, CD56bright, and CD16C NK cell subsets than healthy controls. Conversely, DLBCL NK cell killing and interferon g (IFNg) production capability were comparable to those derived from healthy subjects. Notably, NK cells from refractory/relapsed patients exhibited a lower “natural” cytotoxicity. A marked and prolonged therapy-induced reduction of both “natural” and CD16- dependent NK cytotoxic activities was accompanied by the down-modulation of CD16 and NKG2D activating receptors, particularly in the CD56dim subset. However, reduced NK cell killing was not associated with defective lytic granule content or IFNg production capability. This study firstly describes tumor-associated and therapy-induced alterations of the systemic NK cell compartment in DLBCL patients. As these alterations may negatively impact rituximab-based therapy efficacy, our work may provide useful information for improving immunochemotherapeutic strategies

    Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: role of HSP70/TLR2/NF-kB axis

    Get PDF
    Exosomes are a class of nanovesicles formed and released through the late endosomal compartment and represent an important mode of intercellular communication. The ability of anticancer chemotherapy to enhance the immunogenic potential of malignant cells mainly relies on the establishment of the immunogenic cell death (ICD) and the release of damage-associated molecular patterns (DAMPs). Here, we investigated whether genotoxic stress could promote the release of exosomes from multiple myeloma (MM) cells and studied the immunomodulatory properties they exert on NK cells, a major component of the antitumor immune response playing a key role in the immunosurveillance of MM. Our findings show that melphalan, a genotoxic agent used in MM therapy, significantly induces an increased exosome release from MM cells. MM cell-derived exosomes are capable of stimulating IFNg production, but not the cytotoxic activity of NK cells through a mechanism based on the activation of NF-kB pathway in a TLR2/ HSP70-dependent manner. Interestingly, HSP70 positive exosomes are primarily found in the bone marrow (BM) of MM patients suggesting that they might have a crucial immunomodulatory action in the tumor microenvironment. We also provide evidence that the CD56high NK cell subset is more responsive to exosome-induced IFNg production mediated by TLR2 engagement. All together, these findings suggest a novel mechanism of synergism between chemotherapy and antitumor innate immune responses based on the drug-promotion of nanovesicles exposing DAMPs for innate receptors

    Diclofenac-Induced Apoptosis in the Neuroblastoma Cell Line SH-SY5Y: Possible Involvement of the Mitochondrial Superoxide Dismutase

    Get PDF
    Diclofenac, a nonsteroidal anti-inflammatory drug, induces apoptosis on the neuroblastoma cell line SH-SY5Y through a mitochondrial dysfunction, affecting some antioxidant mechanisms. Indeed, the time- and dose-dependent increase of apoptosis is associated to an early enhancement of the reactive oxygen species (ROS). Mitochondrial superoxide dismutase (SOD2) plays a crucial role in the defence against ROS, thus protecting against several apoptotic stimuli. Diclofenac decreased the protein levels and the enzymatic activity of SOD2, without any significant impairment of the corresponding mRNA levels in the SH-SY5Y extracts. When cells were incubated with an archaeal exogenous thioredoxin, an attenuation of the diclofenac-induced apoptosis was observed, together with an increase of SOD2 protein levels. Furthermore, diclofenac impaired the mitochondrial membrane potential, leading to a release of cytochrome c. These data suggest that mitochondria are involved in the diclofenac-induced apoptosis of SH-SY5Y cells and point to a possible role of SOD2 in this process

    MICA-129 dimorphism and soluble MICA are associated with the progression of multiple myeloma

    Get PDF
    Natural killer (NK) cells are immune innate effectors playing a pivotal role in the immunosurveillance of multiple myeloma (MM) since they are able to directly recognize and kill MM cells. In this regard, among activating receptors expressed by NK cells, NKG2D represents an important receptor for the recognition of MM cells, being its ligands expressed by tumor cells, and being able to trigger NK cell cytotoxicity. The MHC class I-related molecule A (MICA) is one of the NKG2D ligands; it is encoded by highly polymorphic genes and exists as membrane-bound and soluble isoforms. Soluble MICA (sMICA) is overexpressed in the serum of MM patients, and its levels correlate with tumor progression. Interestingly, a methionine (Met) to valine (Val) substitution at position 129 of the α2 heavy chain domain classifies the MICA alleles into strong (MICA-129Met) and weak (MICA-129Val) binders to NKG2D receptor. We addressed whether the genetic polymorphisms in the MICA-129 alleles could affect MICA release during MM progression. The frequencies of Val/Val, Val/Met, and Met/Met MICA-129 genotypes in a cohort of 137 MM patients were 36, 43, and 22%, respectively. Interestingly, patients characterized by a Val/Val genotype exhibited the highest levels of sMICA in the sera. In addition, analysis of the frequencies of MICA-129 genotypes among different MM disease states revealed that Val/Val patients had a significant higher frequency of relapse. Interestingly, NKG2D was downmodulated in NK cells derived from MICA-129Met/Met MM patients. Results obtained by structural modeling analysis suggested that the Met to Val dimorphism could affect the capacity of MICA to form an optimal template for NKG2D recognition. In conclusion, our findings indicate that the MICA-129Val/Val variant is associated with significantly higher levels of sMICA and the progression of MM, strongly suggesting that the usage of soluble MICA as prognostic marker has to be definitely combined with the patient MICA genotype

    The role of life cycle thinking-based methodologies in the development of waste management plans

    Get PDF
    The aim of this article is to examine how Life Cycle Thinking (LCT) contributes to the development of Waste Management Plans (WMPs). The case of Italy has been deeply investigated. The article first analyses whether and how the LCT methodologies were applied to the 21 regional WMPs; then, it draws indications for using LCT in the preparation of a WMP. Moreover, it outlines why the Life Cycle Assessment (LCA) methodology could be used as a powerful tool for regional planning in the waste field, analysing the indications for preparing a WMP that already exist at the European level and in the Italian National WM Programme. Results reveal that only four of the 21 regional WMPs include comprehensive and site-specific LCA studies. Building on these case study results, insights into the opportunities and benefits associated with incorporating LCT methodologies into WMP development and implementation are provided. This study underscores the critical importance of LCT and LCA in promoting sustainable waste management practices, ensuring compliance with European directives, and offering a foundation for more informed regional planning strategies

    Very Early PSA Response to Abiraterone in mCRPC Patients: A Novel Prognostic Factor Predicting Overall Survival

    Get PDF
    BACKGROUND Abiraterone Acetate (AA) is approved for the treatment of mCRPC after failure of androgen deprivation therapy in whom chemotherapy is not yet clinically indicated and for treatment of mCRPC progressed during or after docetaxel-based chemotherapy regimen. The aim of this study is to evaluate the role of early PSA decline for detection of therapy success or failure in mCRPC patients treated with AA in post chemotherapy setting.PATIENTS AND METHODS We retrospectively evaluated 87 patients with mCRPC treated with AA. Serum PSA levels were evaluated after 15, 90 days and then monthly. The PSA flare phenomenon was evaluated, according to a confirmation value at least one week apart. The primary endpoint was to demonstrate that an early PSA decline correlates with a longer progression free survival (PFS) and overall survival (OS). The secondary endpoind was to demonstrate a correlation between better outcome and demographic and clinical patient characteristics.RESULTS We have collected data of 87 patients between Sep 2011 and Sep 2014. Early PSA response (≥ 50% from baseline at 15 days) was found in 56% evaluated patients and confirmed in 29 patients after 90 days. The median progression free survival (PFS) was 5,5 months (4,6-6,5) and the median overall survival (OS) was 17,1 months (8,8-25,2). In early responders patients (PSA RR ≥ 50% at 15 days), we found a significant statistical advantage in terms of PFS at 1 year, HR 0.28, 95%CI 0.12-0.65, p=0.003, and OS, HR 0.21 95% CI 0.06-0.72, p=0.01. The results in PFS at 1 years and OS reached statistical significance also in the evaluation at 90 days.CONCLUSION A significant proportion (78.6%) of patients achieved a rapid response in terms of PSA decline. Early PSA RR (≥ 50% at 15 days after start of AA) can provide clinically meaningful information and can be considered a surrogate of longer PFS and OS
    corecore